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1. (Series of Numbers) Consider
∑∞

n=1{an}.

(a) State the definition and Cauchy criterion of convergence.

(b) Show that if
∑∞

n=1 an converges in R, then in particular, limn→∞ an = 0. Show
that the converse does not hold.

(c) State the rearrangement theorem for a conditionally convergent series.

2. (a) State the comparison test.

(b) State the ratio test and root test. (In the tutorial the statement was not
accurate)

Theorem 1 (Ratio Test). Let {an} be nonzero and suppose the following limit
exists:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L ∈ [0,∞].

Then:

i. If 0 ≤ L < 1, then
∑∞

n=1 an converges absolutely.

ii. If 1 < L ≤ ∞, then
∑∞

n=1 an diverges.

iii. If L = 1, then the test is inconclusive.

The statement regarding root test is similar:

Theorem 2 (Root Test). Let {an} be nonzero and suppose the following limit
exists:

lim
n→∞

|an|
1
n = L ∈ [0,∞].

Then:

i. If 0 ≤ L < 1, then
∑∞

n=1 an converges absolutely.

ii. If 1 < L ≤ ∞, then
∑∞

n=1 an diverges.

iii. If L = 1, then the test is inconclusive.

(c) State the alternating series test.

(d) State the integral test.

(e) Use the definition and convergence (divergence) tests, study the convergence
of the following series: if possible, study whether they are absolutely or condi-
tionally convergent.

i.
∑∞

n=1
1
n
. This is called harmonic series.

ii.
∑∞

n=1
1
np , p ∈ R. This is called Riemann zeta function (on the positive real

axis if p > 1).
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iii.
∑∞

n=3
1

n(ln(n))p
.

iv.
∑∞

n=1
(−1)n
n!

.

v.
∑∞

n=10
(−1)n
lnn

.

vi.
∑∞

n=1 n!e−n.

vii.
∑∞

n=1 n!e−n
2
.

viii.
∑∞

n=1
sinn
n2 .

ix. 0 < a < 1 and a2 + a + a4 + a3 + . . . . This example shows that root test
is strictly stronger than ratio test in some sense.
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(Not Discussed)

3. (a) Let {xn}, {yn} be given and let sn :=
∑n

k=1 yk, s0 := 0. Prove the summation
by parts formula:

m∑
k=n+1

xkyk = (xmsm − xn+1sn) +
m−1∑
k=n+1

(xk − xk+1)sk,

for m > n.

(b) Use summation by parts formula to prove the Kronecker’s Lemma: Let

∞∑
n=1

xn = s ∈ R

Let 0 < b1 ≤ b2 ≤ · · · ≤ bn →∞. Then

lim
n→∞

1

bn

n∑
k=1

bkxk = 0.

Note in particular, we have

lim
n→∞

1

n

n∑
k=1

xk = 0.

(c) Use summation by parts formula to study the convergence of the series:

∞∑
n=1

cos πn

n

Hint: Write cos(πn) = Re(eiπn).

4. (Just for fun) By formal algebraic manipulations, show that:

(a) 1− 1 + 1− 1 + 1− 1 + · · · = 1
2
.

(b) 1− 2 + 3− 4 + 5− 6 + · · · = 1
4
.

(c) 1 + 2 + 3 + 4 + 5 + 6 + · · · = − 1
12

.

Warning: They all diverge in our definition! They make sense only if we generalise
the definitions. Google for abelian and Tauberian’s theorems.
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